мелкозернистая эмульсия - vertaling naar frans
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

мелкозернистая эмульсия - vertaling naar frans

ЖЕЛАТИНОСЕРЕБРЯНАЯ ФОТОЭМУЛЬСИЯ, ПРЕДНАЗНАЧЕННАЯ ДЛЯ РЕГИСТРАЦИИ СЛЕДОВ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ
Ядерная эмульсия; Метод толстослойных фотоэмульсий
  • Треки заряженных частиц, зафиксированные ядерной фотоэмульсией

мелкозернистая эмульсия      
émulsion à grain fin
émulsion grain fin      
- мелкозернистая эмульсия
эмульсия         
  • коагуляция]] частиц фазы II, разделение фаз неустойчивой эмульсии;<br>
D. добавление поверхностно-активного вещества (фиолетовый контур вокруг частиц), стабилизация эмульсии.
  • Микрофотография эмульсии молочного жира (1,5 % молоко)
ДИСПЕРСНАЯ СИСТЕМА, СОСТОЯЩАЯ ИЗ МИКРОСКОПИЧЕСКИХ КАПЕЛЬ ЖИДКОСТИ (ДИСПЕРСНОЙ ФАЗЫ), РАСПРЕДЕЛЕННЫХ В ДРУГОЙ ЖИДКОСТИ (ДИСПЕРСИОННОЙ СРЕД
Эмульсии
ж.
émulsion

Definitie

Ядерная фотографическая эмульсия

Фотографическая эмульсия, предназначенная для регистрации следов заряженных ядерных частиц. Используется в ядерной физике (См. Ядерная физика), физике элементарных частиц (См. Элементарные частицы) и космического излучения, для авторадиографии (См. Авторадиография) и в дозиметрии (См. Дозиметрия) ядерных излучений. Первым применением фотоэмульсии в ядерной физике можно считать исследования А. А. Беккереля (См. Беккерель), который в 1896 обнаружил радиоактивность солей U по вызываемому ими почернению фотоэмульсии. В 1910 японский физик С. Киносита показал, что зёрна галогенида серебра обычной фотоэмульсии становятся способными к проявлению, если через них прошла хотя бы одна α-частица. В 1927 Л. В. Мысовский с сотрудниками (СССР) изготовил пластинки с толщиной эмульсионного слоя 50 мкм и наблюдал с их помощью рассеяние α-частиц на ядрах эмульсии. В 30-х гг. началось изготовление Я. ф. э. со стандартными свойствами, с помощью которых можно было регистрировать следы медленных частиц (α-частиц, протонов). В 1937-1938 М. Блау и Г. Вомбахер (Австрия) и А. П. Жданов с сотрудниками (СССР) наблюдали в Я. ф. э. расщепления ядер, вызванные космическим излучением. В 1945-1948 появились Я. ф. э., пригодные для регистрации слабо ионизующих однозарядных релятивистских частиц, метод Я. ф. э. стал точным количественным методом исследований.

Я. ф. э. отличается от обычной фотоэмульсии двумя особенностями: отношение массы галогенида серебра к массе желатины в 8 раз больше; толщина слоя, как правило, в 10-100 раз больше, достигая иногда 1000-2000 мкм и более (стандартная толщина фирменных Я. ф. э. 100-600 мкм). Зёрна галогенида серебра в эмульсии имеют сферическую или кубическую форму, их средний линейный размер зависит от сорта эмульсии и обычно составляет 0,08-0,30 мкм.

Заряженные частицы или электромагнитное излучение, связанное с ядерными реакциями, вызывают в Я. ф. э. действие, аналогичное свету. Процесс проявления играет роль сильного увеличения первоначального слабого эффекта (скрытого фотографического изображения (См. Скрытое фотографическое изображение)), подробно тому как лавинный разряд в Гейгер-Мюллера счётчике (См. Гейгера - Мюллера счётчик) или бурное вскипание пузырьков в пузырьковой камере (См. Пузырьковая камера) многократно увеличивают слабые эффекты, связанные с начальной ионизацией, производимой заряженной частицей. Ядерные частицы, как правило, обладают большой энергией, благодаря чему они могут создавать центры чувствительности в лежащих на их пути зёрнах галогенида серебра. После фиксирования Я. ф. э. вдоль следа частицы образуется цепочка чёрных зёрен. Следы частиц наблюдают с помощью микроскопа при увеличении 200-2000.

В ядерной физике эмульсии обычно используют в виде слоев, нанесённых на стеклянные подложки. При исследовании частиц высоких энергий (на ускорителях или в космическом излучении) их иногда укладывают в большие стопки в несколько сотен слоев. Объём стопок доходит до десятков л; образуется практически сплошная фоточувствительная масса. После экспозиции отдельные слои могут быть наклеены на стеклянные подложки и обработаны обычным образом. Положение слоев точно маркируется, благодаря чему траекторию частиц легко прослеживать по всей стопке, переходя от слоя к слою.

Свойства следа, оставленного в эмульсии заряженной частицей, зависят от её заряда Z, скорости v и массы М. Так, остаточный пробег частицы (длина следа от его начала до точки остановки) при данных е и v пропорционален М; при достаточно большой скорости v частицы плотность зёрен (число проявленных зёрен на единицу длины следа) g Ядерная фотографическая эмульсия e2/v2. Если плотность зёрен слишком велика, они слипаются в сплошной чёрный след. В этом случае, особенно если е велико, мерой скорости может быть число δ-электронов, образующих на следе характерные ответвления. Их плотность также Ядерная фотографическая эмульсия e2/v2. Если е = 1, а v Ядерная фотографическая эмульсия с (с - скорость света), то след частицы в релятивистской Я. ф. э. имеет вид прерывистой линии из 15-20 чёрных точек на 100 мкм пути (рис. 1). В Я. ф. э. можно измерять рассеяние частицы, среднее угловое отклонение на единицу пути: φ Ядерная фотографическая эмульсия e/pv (р - импульс частицы). Я. ф. э. можно поместить в сильное магнитное поле и измерить импульс частицы и знак её заряда, что позволяет определить заряд, массу и скорость частицы. Достоинства метода Я. ф. э. - высокое пространственное разрешение (можно различать явления, отделённые расстояниями < 1 мкм, что для релятивистской частицы соответствует временам пролёта <10-16 сек) и возможность длительного накопления редких событий.

Создание современной Я. ф. э. явилось большим научно-техническим достижением. По словам английского физика С. Пауэлла, "разработка улучшенных эмульсий как бы открыла новое окно в природу, через которое мы впервые увидели следы, странные и неожиданные, еще неизвестные физикам...".

С 1945 по 1955 методом Я. ф. э. были сделаны важные открытия: зарегистрированы π-мезоны (пионы) и последовательности распадов π → μ + ν, μ → e + ν + ν в Я. ф. э., экспонированных космическим излучением, а также обнаружены ядерные взаимодействия π-- и К--мезонов. С помощью Я. ф. э. удалось оценить время жизни π0-мезона (10-16 сек), обнаружен распад К-мезона на 3 пиона, открыт Σ-гиперон и обнаружено существование гипер-ядра (См. Гипер-ядро), открыт антилямдагиперон (см. Гипероны). Методом Я. ф. э. был исследован состав первичного космического излучения; кроме протонов, в нём были обнаружены ядра He и более тяжёлых элементов, вплоть до Fe (рис. 3). С 60-х гг. метод Я. ф. э. вытесняется пузырьковыми камерами (См. Пузырьковая камера), которые дают бо́льшую точность измерений и возможность применения ЭВМ для обработки данных.

Лит.: Пауэлл С., Фаулер П., Перкинс Д., Исследование элементарных частиц фотографическим методом, пер. с англ., М., 1962.

А. О. Вайсенберг.

Рис. 1. Следы частиц с различной ионизующей способностью. "Звезда" создана π-мезоном с энергией 750 Мэв. На следе, идущем вправо, заметны "веточки" медленных δ-электронов.

Рис. 2. "Звезда", образованная ядром S из первичного космического излучения, след унизан многими следами δ-электронов. Следы частиц с небольшой ионизацией (стрелки) принадлежат мезонам, возникшим при столкновении ядра S с ядрами эмульсии.

Wikipedia

Ядерная фотографическая эмульсия

Ядерная фотографическая эмульсия — специальная желатиносеребряная фотоэмульсия, предназначенная для регистрации следов элементарных частиц методом толстослойных фотоэмульсий. От обычных фотографических эмульсий отличается большой толщиной, иногда превышающей 1 миллиметр (до 1200 микрон). Ещё одно отличие заключается в высокой однородности микрокристаллов и повышенной концентрации галогенида серебра, достигающей 85%. Ядерная эмульсия используются для регистрации и дальнейшего исследования быстрых заряженных элементарных частиц, таких как, например, нуклоны и мезоны.

Проходя через эмульсию, заряженные частицы вызывают эффект, сходный с получаемым при экспонировании видимым излучением. Частицы, проходящие через фотоэмульсию, отрывают электроны от отдельных атомов брома микрокристаллов бромида серебра. Цепочка модифицированных таким образом кристалликов образует скрытое изображение. При лабораторной обработке эмульсии в возбуждённых микрокристаллах восстанавливается металлическое серебро, и цепочка его зерен образует так называемый трек частицы. По длине и толщине трека можно оценить энергию и массу частицы. Оптическая плотность каждого трека на проявленной ядерной эмульсии пропорциональна квадрату заряда частицы, вызвавшей её почернение, и обратно пропорциональна скорости. Для регистрации релятивистских частиц используют «эмульсионную камеру», которая представляет собой стопку толстых ядерных фотоэмульсий без подложки. Их укладывают в десятки и сотни слоёв, а затем, благодаря маркировке последовательности, вычисляют траектории прошедших через камеру частиц.

Ядерная фотоэмульсия выпускается как в виде бесподложечных слоёв, так и в виде фотопластинок. Лабораторная обработка существенно отличается от обычных фотоматериалов из-за очень большой толщины слоя. Наклеенную на стеклянную подложку эмульсию такого типа пропитывают охлаждённым до 2 °C проявителем в течение 1—2 часов, а затем раствор постепенно нагревают до 20 °C. После кислой стоп-ванны производится фиксирование, занимающее до 3 суток из-за пониженной температуры фиксажа. Из-за большой плотности фотоэмульсии треки получаются очень короткими (порядка 10-3 см для α-частиц, испускаемых радиоактивными элементами), поэтому регистрация и измерение треков частиц производится с помощью специальных микроскопов с большим увеличением. Преимущество фотоэмульсий в том, что время экспозиции может быть сколь угодно большим. Это позволяет регистрировать редкие явления. Благодаря большой тормозящей способности фотоэмульсий увеличивается число наблюдаемых интересных реакций между частицами и ядрами.

В 1937 году Мариетта Блау и Герта Вембахер зафиксировали ядерный распад в ядерных эмульсиях, подверженных экспозиции космическими лучами на высоте 2300 м над уровнем моря.

Используя эмульсии на высокогорьях, Сесил Фрэнк Пауэлл с коллегами открыл пион в 1947 году.